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This work is aimed at  understanding mechanisms which govern the growth of 
secondary three-dimensional modes of a particular type which feed from a resonant 
energy exchange with the primary KrirmBn instability in two-dimensional wakes. 
Our approach was to introduce controlled time-periodic three-dimensional (oblique) 
wave pairs of equal but opposite sign, simultaneously with a two-dimensional wave. 
The waves were introduced by an array of v-component-producing elements on the 
top and bottom surfaces of the body. These were formed by metallized electrodes 
which were vapour deposited onto a piezoelectrically active polymer wrapped 
around the surface. The amplitudes, streamwise and spanwise wavenumbers, and 
initial phase difference are all individually controllable. The initial work focused on 
a fundamental/subharmonic interaction, and the dependence on spanwise wave- 
number. The results include mode eigenfunction modulus and phase distributions in 
space, and stream functions for the phase-reconstructed flow field. Analysis of these 
shows that such a resonance mechanism exists and its features can account for 
characteristic changes associated with the growth of three-dimensional structures in 
the wake of two-dimensional bodies. 

1. Introduction 
The mechanisms of subharmonic instability identified by Kelly (1968) for free 

shear layers, by Herbert (1983a) for plane Poisiuelle flow, and by Craik (1971) and 
Herbert (1983b) in boundary layers are the latest additions to the family of 
secondary instability mechanisms in shear flows. In  particular, the last three cited 
works are aimed at the secondary growth of three-dimensional modes, making this 
mechanism an important link in the chain of events governing transition to 
turbulence. The understanding of this process is both of fundamental interest, and 
a necessary step to obtaining rational approaches for controlling laminar-to- 
turbulent transition in these flows. 

In the work described in this paper, we are interested in expanding this family of 
flows to include the ‘far-wake’ region of a two-dimensional body. By far-wake, we 
mean simply downstream of the point of flow reversals commonly occurring close to 
bluff bodies. Most past experimental work which best satisfies this requirement 
involved wakes of thin flat plates at  zero angle of attack. One of the earliest of these 
was by Sat0 & Kuriki (1961). Using an external far-field sound source, they directly 
excited unstable modes in the wake. Phase measurements identified these as two- 
dimensional travelling waves. The spatial growth rates and mode shapes of these 
were reasonably predicted from a linear analysis of a base flow consisting of a 
Gaussian mean profile. By analysing the character of velocity time series taken a t  
different downstream locations, they classified the evolution of the forced modes into 
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three regions : the linear region, the nonlinear region and the three-dimensional 
region. The nonlinear region was defined as beginning where the amplitudes of 
exponentially growing modes saturated. This region ended where the disturbances 
became three-dimensional. The onset of three-dimensionality was judged by a 
distinct change in the mode amplitude and phase distributions across the wake, and 
a rise in the level of spanwise velocity fluctuations. 

The results of that  experiment prompted KO, Kubota & Lees (1970) to perform a 
finite-disturbance analysis of the stability of a two-dimensional laminar wake. This 
was used to explain the rapid changes observed in wake centreline velocity defect and 
wake half-width in the nonlinear region. In  addition, it pointed out the significance 
of quadratic interactions which play a role in the generation of higher-harmonic 
modes for single-frequency conditions, and sum and difference modes for multiple- 
frequency inputs. 

Further verification of the stability characteristics of the linear growth region 
came from Sat0 & Saito (1978) for modes induced by a far-field sound source in the 
wake of a slender airfoil. As with Sat0 & Kuriki (1961), the far-field source is expected 
to excite two-dimensional waves. They had also investigated the effect of multiple- 
frequency sources. Specifically forcing at two frequencies, above and below the 
natural wake instability frequency, was judged to accelerate transition. These 
produced discrete sum and difference modes, which further interacted with 
background fluctuations to yield an effective randomization. This forcing also 
resulted in an increase in the spreading of the wake past the nonlinear region. 

Neither Sat0 & Kuriki (1961) or Sat0 & Saito (1978) observed any spanwise 
periodic structure in the wake. The formation of such a structure has come to be a 
bellwether of a three-dimensional secondary instability mechanism in the other flow 
fields. I n  transitional boundary layers, the secondary growth of oblique subharmonic 
wave pairs leads to  a staggered array of peak and valley structures, such as has been 
recorded by Corke & Mangano (1989, figure 14c). Corresponding with this is ;t 
spanwise periodic variation in amplitude and n-shifts in the mode phase associated 
with the location of spanwise amplitude minima. 

The first visual evidence of such features came from Cimbala (1984) and Cimbala, 
Nagib & Roshko (1988). They investigated the flow in the far-wake region of a 
circular cylinder a t  diameter Reynolds numbers of 140 to  150. Using both velocity 
sensors and flow visualization, they followed the downstream growth and decay of 
the initial two-dimensional vortex street, and the emergence of another structure of 
larger streamwise scale in the far wake. This new structure was determined to be a 
result of an instability of the base flow corresponding to  a Gaussian mean velocity 
profile. This first appeared a t  z / D  = 100, and was initially two-dimensional. In  some 
cases, a three-dimensional structure with twice the streamwise wavelength then 
quickly emerged. Flow visualization records in the spanwise plane in one case, figure 
20 of Cimbala et al. (1988), bear a striking resemblance to three-dimensional 
subharmonic secondary instability modes in boundary layers. This prompted them 
to question if a similar mechanism might be in play in the far wake. 

A recent combined experimental and numerical investigation by Meiburg & 
Lasheras ( 1988) has looked a t  the development of three-dimensional vortical 
structures in the wake of a plane flat plate separating two equal-velocity laminar 
flows. I n  the experiment, a sinusoidal corrugation or indentation of the plate trailing 
edge was used to passively introduce a fixed spanwise perturbation to the two- 
dimensional vortex street. The three-dimensionality emerged as a three-dimensional 
distortion of the initially two-dimensional vortex tubes. Through the action of the 
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mean shear, the initial spanwise vorticity was reoriented, stretched and amplified. 
Qualitatively similar dynamics occurs for the initial stages of fundamental mode 
transition in boundary layers such as documented by Klebanoff, Tidstrom & Sargent 
(1962). 

A recent investigation which is more relevant to the conditions for the growth of 
three-dimensional structures in figure 20 of Cimbala (1984) comes from Lasheras & 
Meiburg (1990). More specifically, we are interested in that part of their investigation 
that deals with three-dimensional subharmonic perturbations of the plane wake. 
This involved a numerical simulation of inviscid vortices for two discretized vorticity 
layers representing each side of the wake. The downstream evolution of the vortex 
sheets due to an initial perturbation consisting of a single two-dimensional wave and 
pairs of oblique waves, with equal but opposite spanwise wavenumbers, at the 
subharmonic frequency of the two-dimensional mode, resulted in patterns of three- 
dimensional structures which closely resembled those obtained in the flow 
visualization records of Cimbala. Side-view cuts through the layer in the simulation 
had also indicated a lack of symmetry about the wake centreline, which arose from 
the growth of the subharmonic wave. There was no experiment equivalent to the 
conditions of the inviscid model in their report. 

An analytic approach was taken by Flemming (1987) in order to clarify the role of 
the secondary instability in the far wake. This involved the linearized secondary 
disturbance equations about a basic state consisting of a Gaussian mean profile and 
a primary two-dimensional Orr-Sommerfeld mode. This lead to a Hill-type system 
of equations for which several types of resonance mechanisms were expected. The 
results indicated that the primary instability alone cannot explain the development 
of three-dimensional structures in the far wake, but for sufficiently large primary 
disturbance amplitudes, a three-dimensional subharmonic instability can occur. 
The analysis also explains the lack of symmetry about the centreline of the 
fluctuation intensities, and presumably structure, to be a consequence of the lack of 
centreline symmetry of the secondary instability equations when the primary mode 
is symmetric. 

For the Reynolds-number range of Cimbala (1984), Flemming's analysis predicts 
a maximum growth rate for subharmonic instability for wave pairs with wave angles 
of k66 to f68", with respect to the mean flow direction. At this condition, the 
growth rate of the three-dimensional secondary mode exceeds that of the strongest 
two-dimensional primary mode. In  terms of the primary mode development, 
Flemming had also found good agreement with Sat0 & Kuriki (1961) as well as with 
the small-defect turbulent wake of Wygnanski, Champagne & Marasli (1986). 

1.1. Objectives 
The object of this work was to develop an experiment to study mechanisms for 
secondary growth of three-dimensional modes in the far wake of a two-dimensional 
body. Specifically we would focus on a parametric resonance mechanism between 
travelling waves consisting of a fundamental two-dimensional mode and pairs of 
subharmonic three-dimensional modes with equal but opposite spanwise wave- 
numbers. A specially designed transducer would be used to introduce the phase- 
locked two- and three-dimensional disturbance patterns to simultaneously seed these 
modes directly on the surface of the body. The methodology for introducing these 
would follow that used by Corke & Mangano (1989) in promoting subharmonic 
resonance interactions in boundary layers. We required that the disturbance input 
amplitudes be at levels which would guarantee an initial linear regime so as to allow 
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comparisons to linear theory and to the secondary instability analysis of Flemming 
(1986). The downstream development of each mode would be documented using two- 
component hot-wire measurements taken across the wake. These would be used to 
generate the eigenfunction modulus and phase distributions for comparison to the 
previous experiments and analysis. Finally, phase-averaged reconstructions of the 
velocity field in the plane across the wake were to be performed to give a better 
physical picture of the structure of the wake with controlled three-dimensional-mode 
growth. 

2. Experimental apparatus and techniques 
2.1.  Airfoil 

The wake-producing body used in this study was a NACA 0008 airfoil. It had been 
chosen on the criteria that  it would produce a thin wake such as with a flat plate, but 
would be thick enough to  provide room for milled slots to accommodate the 
oscillations of the piezoelectric film surface used to seed unstable modes. Also, since 
it is a simple standard shape, our experimental results obtained using it should be 
more readily comparable to theoretical or computational results. A schematic 
drawing of the airfoil and piezoelectric film covering is shown in figure 1 (a).  

The chord dimension of the airfoil was chosen to  be 7.62 cm in order to maximize 
the active piezoelectric area to  achieve sufficient forcing amplitude, as well as to  
provide room on the airfoil for individual conducting paths. The airfoil span was 
45 cm, which was sufficient to extend outside the walls of the measurement section, 
where wire electrical connections were made. 

The airfoil shape was cast in acrylic from a specially designed mould. This 
provided a body with a smooth uniform shape in span. The airfoil was also quite rigid 
and not susceptible to lengthwise or twisting vibration modes. In  addition, it was not 
electrically conductive, which was a requirement for use with the piezoelectric film. 
Full details of the fabrication are given by Krull (1989). 

The active portions of the piezoelectric film were located past the maximum 
thickness point, along the nearly linear portion of the airfoil shape. In  this area, the 
surface was milled out to allow for vertical displacement of the film. The piezoelectric 
film was wrapped around the surface of the airfoil and stretched across the machined- 
out portion. 

2.2. Piezoelectric film 

The premise behind the use of the piezoelectrically active film was the creation of a 
device which would introduce multiple periodic disturbances directly on the surface 
without otherwise modifying the base flow condition. Since one of these modes was 
three-dimensional, a far-field sound source such as used by Sat0 & Kuriki (1961) or 
Sat0 & Saito (1978) was not suitable. We also wanted the ability to change the 
spanwise wavelength of input three-dimensional disturbances. This precluded the 
use of fixed passive distortions of the airfoil trailing edge, such as used by Meiburg 
& Lasheras (1988). In  our approach, we chose a polyvinylidene fluoride (PVDF) film 
which is available under the name Kynar from Penwalt Corporation. The overall 
dimensions of the film sheet were 30 cm x 15 cm x 0.052 mm tbick. Onto this film we 
had vapour deposited a thin layer (approximately 1OOOA thick) of a nickel- 
aluminium alloy in the two patterns (black) seen in figure l ( b ) ,  one on each side 
of the film. These patterns overlap so that the large common electrode only falls 
under the smaller rectangular electrodes, and not under the thin conducting paths. 
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FIGURE 1. (a) Wake-producing airfoil with piezoelectrically active sheet wrapped around, and 
( b )  schematic of metalization pattern used to excite three-dimensional modes. 

Only portions of the film directly sandwiched between metal electrodes are active 
when a voltage is applied. These active regions (elements) elongate or contract 
depending on the voltage polarity. The film had been oriented so that the primary 
deformation direction was along the long axis of the smaller electrodes. 

The elements were located over the milled-out regions on the top and bottom 
surfaces of the airfoil. A positive-going time series was used to excite a periodic 
lengthening of an element. Because of the fixed ends, this action produced a periodic 
outward bowing of the element. The actual direction (outward or inward) of bowing 
was prescribed by the polarization, in the thickness direction, of the film. 

A total of 60 individually controllable elements, 30 each on the top and bottom of 
the airfoil, were used. The spanwise dimension of the elements was chosen so as to 
be able to produce oblique modes with wave angles in the range from 45' to 70', those 
determined to be most amplified by Flemming (1987). The relation between the 
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spanwise dimension of the elements and wave angles of three-dimensional forced 
modes comes from Corke & Mangano (1989). This yielded a maximum dimension of 
5 mm. 

Each of the elements was individually controllable in amplitude, phase and 
frequency. The time series to the elements were provided by a digital computer which 
was also used for data acquisition. The method for this was the same as that used by 
Corke & Mangano ( 1989) for forcing three-dimensional-mode resonance in laminar 
boundary layers. Additional electronic hardware was required to amplify the 
voltages from the computer to the higher voltages (up to 200 V) needed to provide 
sufficient motion of the elements. The complete details of this are contained in the 
thesis by Krull (1989). 

2.3. Wind tunnel 
The airfoil was mounted through the sidewalls of the measurement section of the 
wind tunnel. This is a flexible, open circuit facility which is easily accessed and 
modified, with qualities necessary for a sensitive experiment such as this. A 
schematic of the measurement section is shown in figure 2 (a, b ) .  It consists of 29.2 cm 
diameter cylindrical sections of transparent Plexiglas. Each section is flanged so that 
they can be bolted together in any desired arrangement or length. Upstream of the 
entrance to the measurement section are a honeycomb and series of low-solidity 
screens followed by a 9 : 1 area ratio contraction. The turbulence intensity at  the exit 
of the contraction was measured to be 0.05% of the mean streamwise velocity. 

In the configuration we used, the length of the measurement section was 2.3 m. 
The airfoil was located 0.44 m downstream of the entrance. These dimensions are 
shown with respect to the airfoil chord dimension in figure 2 (a,  b ) .  Velocity surveys 
were performed across the wakes at  the centrespan location of the airfoil. The x- 
position range of these measurements is seen as the cross-hatched region in the figure. 
Flow visualization was performed using a smoke wire in the plane parallel to the 
airfoil span. The locations of the smoke wire and field of view are seen as the dotted 
region in the figure. Note that, as seen in (a) ,  the plane of the smoke wire was 
displaced slightly from the wake centreplane. 

A computer-controlled motorized traversing mechanism capable of moving in two 
directions was used to traverse the hot-wire sensor. This was located outside the 
measurement section, with only a probe support extending through a slot in the 
sidewall. 

2.4. Instrumentation and time-series processing 
A dual hot-wire sensor in an x-configuration was used to measure velocity 
components in the streamwise (5) and cross-stream (y) directions. These were 
operated in a constant-temperature mode using DISA 55DOl anemometer units. The 
analog signals were amplified and anti-alias filtered prior to being digitized. The 
digital acquistion rate was 24 times the oblique mode frequency. 

The data sets consisted of records of contiguous time-series points of the 
anemomenter outputs, at  discrete y-positions across the wake for each x-position. 
The spatial distribution of sampled y-locations varied in order to concentrate points 
in the regions of largest gradients of the mean and r.m.s. fluctuation profiles. The 
record size and sampling rate used resulted in a total sample containing 
approximately 700 cycles of the fundamental mode. 

Linearization of the stored anemometer voltages was performed using a third- 
order polynomial with best-fit coefficients determined during sensor calibration runs. 
The time-series velocity pairs were summed and differenced to give the respective U- 
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FIGURE 2. Measurement-section schematic, (a) top view, (a) front view ; 
and (c) laboratory coordinate frame. c = 7.62 mm = 3 in. 

and v-velocity component values. The eigenfunction modulus and phase distributions 
were determined from computations of the cross-spectra at each spatial location. The 
reference time series in these cases corresponded to that of the most upstream x- 
location on the wake centreline. 

Since the data series were acquired in phase with the mode forcing, with 24 samples 
per subharmonic cycle, phase-averaged velocity series were easily obtained. These 
phase-averaged time series in the (y,z)-plane formed the basic set used for 
calculation of U,  v-velocity stream function, z-component of vorticity, and velocity 
tracer particle distributions presented in the results. 

3. Base flow conditions 
Our purpose was to simulate Reynolds-number conditions similar to those of 

Cimbala (1984). In the far wake, where the mean velocity profile is Gaussian, a 
convenient form of the wake Reynolds number is Re, = hU, blv, where b is the wake 
half-width and h is a wake-deficit parameter equal to (Uo-Uc) /U0.  Here U, is the 
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FIGURE 3. Normalized mean velocity profiles at different downstream distances in (a) the natural 
(unforced) wake and ( b )  with J-condition forcing. The curve is the Gaussian distribution, which 
corresponds to exp (-0.693~~). 

free-stream velocity and U, the centreline velocity. We chose as a representative x- 
position, 1.5 chord lengths downstream of the airfoil (z = 117 cm), where b = 2.2 mni 
and h = 0.33. The free-stream velocity was kept fixed at  2.59 m/s. This gave a wake 
Reynolds number value of Re, = 119. 

The Reynolds number, based on cylinder diameter, a t  which the emergence of 
three-dimensional modes was best documented by Cimbala (1984) was Re, = 150, 
past x/D = 100. Using that position as a reference, with U, = 1.52 m/s, b = 1.25d, 
d = 1.6 mm and h = 0.26, the wake Reynolds number was Re, = 50. In Sato & 
Kuriki's (1961) work Re, = 450. Therefore our value falls in the range between these 
two experiments. We chose to be closer to a value of 100 since most of the stability 
calculations of Flemming (1987) corresponded to that wake Reynolds number. 

The mean profiles for the natural wake a t  five downstream locations which bracket 
the range of x-positions examined are presented in figure 3(a) .  These show good 
self-similarity when normalized by the local centreline velocity, U,, and the wake 
half-width. The curve corresponds to the Gaussian distribution, exp ( -Ay2), with 
A = 0.693 taken from Sato & Kuriki (1961). The comparison to the Gaussian form is 
very good, especially for - 1.2 < y/b < 1.2. 

Another measure of the wake development is the downstream growth of the wake 
half-width. This is seen for the natural wake as the solid-filled symbols in figure 4. 
Theory predicts an increase in the half-width proportional to the square-root of the 
downstream distance. The theoretical curve is plotted as the dashed line. For the 
natural wake, the data bracket this downstream development reasonably well. 

An indication of the background conditions and modes which make up the 
unsteady character of the wake can be obtained by viewing autospectra of velocity 
fluctuations across the wake. These are shown in figure 5 for the u- and v-velocity 
components at  x = 162 mm. They are presented in a three-dimensional perspective 
view with frequency on the horizontal axis, amplitude on the vertical axis, and 
normalized position across the wake in the depth axis. The amplitude axis is 
presented as the r.m.s. level, on a linear scale, as a percentage of the free-stream 
speed, U,,. 

The spectra show energy in velocity fluctuations only within the wake region. 
These fluctuations appear within three relatively broad peaks centred at  ap- 
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FIQURE 4. Downstream growth of wake half-width for the natural (0, ---) and two forced 
conditions : 0,  . . . ., J; a, -, A. 
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FIQURE 5. Velocity spectra components taken at different positions across the wake, at a fixed 
2-position of 162 mm in the natural (unforced) conditions. 
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proximately 104, 124 and 143 Hz. The frequency of the most amplified primary two- 
dimensional sinuous mode from linear temporal calculations, based on our conditions 
at x = 42 mm where b = 1.65 mm, is 129 Hz. This corresponds closely to the 
frequency of the centre peak in the spectra. Now, the peak in the theoretical growth 
rate curve is relatively flat so that a range of frequencies from 110 to 148 Hz have 
amplification rates which are within 2 % of the maximum. This range encompasses 
well the band of frequencies observed here. We therefore believe these modes to  be 
due to the natural instability of the wake. 

What is the origin of three modes in the most amplified range, rather than the 
single strong mode we would expect for a two-dimensional wake? In fact, by 
adjusting the velocity slightly lower or higher, we could achieve a sharp single peak 
in the velocity spectrum in the wake. In a plot of Strouhal number versus Reynolds 
number, our conditions corresponded to a small region of Strouhal-number 
discontinuity, such as was the focus of a recent paper by Williamson (1989). The 
discontinuity results in frequency sidebands, such as we observe here, and a general 
lowering of energy in the principle mode. Williamson attributes these to cylinder end 
effects which result in shallow-angle oblique mode shedding. 

I n  our case, we have deliberately positioned ourselves to be a t  the Reynolds 
number of this discontinuity in order that  the natural shedding mode be weakened. 
This allows us to easily overwhelm the natural mode with our forced modes without 
having to  use such large initial amplitudes that we would have little or no linear 
amplification region, which would have violated one of our objectives. The proof of 
our success should be apparent when we compare the spectra from the unforced wake 
to that with time-periodic forcing presented in the next section. 

4. Resonance forcing 
The wake was forced to produce a plane (two-dimensional) mode and oblique 

(three-dimensional) modes so as to promote the resonant growth of the latter. I n  all 
cases the forced modes were symmetric (sinuous). The two-dimensional mode was a t  
100 Hz. For the conditions a t  the most upstream measurement location, where the 
average wake half-width was 1.7 mm, this corresponded to  arcr = 0.411, where a, is 
the streamwise wavenumber and C, the phase velocity. This was slightly less than 
the value for the most amplified two-dimensional wave a t  this Reynolds number 
(0.519), although the amplification rate is only approximately 2% less. By forcing 
away from the most amplified, and generally naturally occurring, mode there is no 
question as to the origin of modes related to the forcing. 

Simultaneously with the two-dimensional mode input was a three-dimensional 
mode consisting of oblique wave pairs with equal but opposite spanwise wave- 
numbers. The three-dimensional modes were always at the exact subharmonic 
frequency of the two-dimensional mode, a, C, = 0.205. However, we have inves- 
tigated two cases with oblique wave pairs with different spanwise wavenumbers. 
These correspond to  initial wave angles of 73" and 60°, and have been denoted as J- 
and A-conditions. Both these fall within the most amplified range for three- 
dimensional mode resonance based on analysis. A summary of the conditions is given 
in table 1.  

As mentioned, one of our principal objectives was to have forcing levels which 
allowed an initial linear growth region. To document this we measured the transfer 
function of the forcing-level input to the output of maximum velocity fluctuations 
for the two-dimensional mode alone, a t  x = 102 mm. The result is presented in figure 
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FIGURE 6. Input/output amplitude transfer function for fundamental two-dimensional mode at 
x = 102 mm. 

F2-D 4 . D  cr)%D 'rl8-D e 
Case (Hz) (Hz) (s-l) (s-l) (deg.) A2-D/A3.D 

J 100 50 0.41 1 0.205 73 1 .o 
A 100 50 0.41 1 0.205 60 0.3 

TABLE 1. Forcing conditions 

6. In  the linear regime, we expect a linear input/output relation to exist. At this x- 
position, this was true for forcing levels of up to 85 V peak-to-peak. We chose a 75 V 
forcing amplitude to ensure that a linear regime would exist, at  least up to this 
downstream location for this mode. 

From linear stability analysis (Squires theorem), we expect the oblique modes to 
be less amplified than the two-dimensional mode. By the same argument, the 73O 
wave angle mode should be less amplified than the 60" mode. We had substantiated 
this in the experiment where, in the linear region, the latter case experienced neutral 
growth, and the former decayed. The result of this was that the steeper wave 
required a higher initial amplitude than the other. This ensured that the three- 
dimensional mode was still at a sufficient amplitude, above the background 
fluctuations, when the two-dimensional mode had grown to its threshold amplitude 
for resonance to occur. This can be seen in the two-/three-dimensional-mode 
amplitude ratio given in table 1. For the less steep three-dimensional waves, the 
initial amplitude of the three-dimensional mode was one-third the size. 

4.1. Flow visualization 
A sample flow visualization record in the (x,z)-plane for a 60' wave angle (A- 
condition) is shown in figure 7. The plane of visualization with respect to the airfoil 
was shown in figure 2(a, b). The flow direction is from left to right. This photograph 
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I <-------- A=; _______ > I 
FIQIJRE 7. Sample phase-averaged smoke-wire flow visualization records for A-conditions, 

viewed in the (x, z)-plane. Flow is from left to right. 

is actually a phase-averaged view of the approximately 25 ensembles obtained by 
multiple strobe-light flashes triggered in phase with the forcing time series. 
Photographs such as these were used to verify the spanwise structure of the flow field, 
and the degree of phase locking. The latter is evident by the successive overlaying of 
the three-dimensional pattern in space with multiple flashes of the light source. The 
pattern clearly shows the oblique wave pairs with crossings which are periodic in the 
flow (x) and spanwise (2) directions. The streamwise spacing between oblique mode 
crossings corresponds to the subharmonic-mode wavelength, The expected 
value based on streamwise phase measurements is shown below the photograph. The 
correspondence between these is good. 

4.2. Velocity surveys 
The results in this section correspond to hot-wire surveys taken across the wake. The 
spanwise (2) position for these measurements corresponds to the location of an 
oblique mode intersection. At  such a spanwise position, the fluctuation amplitude of 
the three-dimensional mode is a maximum. For these, we will mainly focus on the J- 
conditions, which are generally representative of the results for the A-case. 

The normalized mean velocity profiles at  different x-positions, from the most 
upstream (x = 42 mm) to the most downstream (x = 522 mm) are shown in figure 
3 ( b ) .  Although there is some scatter, the data collapse reasonably well onto the 
Gaussian mean profile, represented by the solid line. The forcing conditions have 
therefore not altered the profile shape in a significant way, when compared to the 
natural (unforced) wake mean profile (figure 3a) .  

The character of the velocity fluctuations across the wake in this forced case are 
seen in the autospectra in figure 8. These were taken a t  the same x-position (162 mm) 
as the spectra in the natural wake in figure 5.  The sharp nature of the spectral peaks, 
especially in the contrast to the broad peaks in the spectra for the natural wake, 
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FIGURE 8. Velocity spectra components taken at different positions across the wake, at a fixed 
x-position of 162 mm in the forced J-conditions. 

attest to  the degree of control imposed by the piezoelectric transducer, and the choice 
of disturbance input conditions. 

The spectral peaks of the two-dimensional mode, at 100Hz, and the three- 
dimensional mode, at 50 Hz, are readily seen for both velocity components. The 
other peak at  150 Hz is a result of a summing interaction between the two input 
modes. The energy in these modes is clearly only concentrated in the wake of the 
airfoil. 

One can deduce the eigenfunction modulus across the wake for each mode by 
drawing a curve through the spectral peaks. From these, the downstream 
development of the total mode energy, found by integrating the area under the 
eigenfunction, namely 

was determined. This is shown for the u-component, for both the J- and A- 
conditions, in figure 9. In this figure, the open symbols correspond to the fundamental 
(two-dimensional) mode and the closed symbols correspond to the subharmonic 
(three-dimensional) mode. The data have been plotted as the log of the ratio of the 
amplitude in each mode as a function of downstream distance, to the amplitude of 
the fundamental mode at the first measurement position. For the J-conditions, the 
initial amplitude of the fundamental and subharmonic modes was the same, so that 



112 

2 

T .  C .  Corke, J .  D .  Krull and M .  Ghassemi 

0 110 220 330 440 550 

x (mm) 

2 

I f  
- 1  

0 110 220 330 440 550 

x (mm) 
FIQURE 9. Streamwise growth of eigenfunction integrated amplitude in the fundamental and 
subharmonic modes for (a) J-conditions and ( b )  A-conditions. Open symbols correspond to the 
fundamental two-dimensional mode and closed symbols to the subharmonic three-dimensional 
mode. Positions (a-f) are referred to in figures 18-20. 

the ratio was one (table 1). For the A-conditions, the initial amplitude of the 
subharmonic mode was a factor of three lower. 

For the two-dimensional fundamental mode, we observe an initial region, up to 
z = 110 mm, of exponential (linear) growth. The spatial amplification rate, -ai, is 
given for that mode as the slope of the straight line (solid) in the linear regime. The 
line is shown with the slope -ai = 0.206 mm-', which corresponds to the theoretical 
amplification rate for a two-dimensional symmetric (sinuous) mode at  this 
streamwise wavenumber, taken from the temporal calculation of Flemming (1987). 
The temporal amplification rate was given as -ai b/U,  = 0.137. To extract -ai, we 
utilized the wake half-width at the first measurement location (x = 42 mm). The 
comparison to the theoretical amplification rate is observed to be excellent. 

For the subharmonic three-dimensional mode, in the J-condition, the amplitude 
initially decays exponentially, but past the fourth x-position abruptly grows 
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modes for the forced J-condition. 

exponentially. The secondary growth rate of this mode is comparable to that of the 
two-dimensional mode. Similar behaviour occurs for the A-condition. For the less 
steep wave angle, the three-dimensional mode is initially neutrally growing. Past the 
second measurement position, this abruptly changes to a positive exponential 
growth, comparable to that of the two-dimensional mode. 

To trace the origin of the change in amplification rate of the three-dimensional 
mode, we focus on their downstream phase development. The phase speed was 
determined from the slope of the downstream phase change relative to the reference 
position, at the most upstream x-location, on the wake centreline. In order to avoid 
the large gradients in phase occurring near the wake centreline, the downstream 
phase change was measured at  y l b  = 5.  As a check, we also measured the 
downstream phase change on the other side of the wake at y l b  = - 5 .  This gave an 
identical result. 

The downstream phase development for the two-dimensional fundamental and 
three-dimensional subharmonic modes for the J-conditions is shown in figure 10. The 
values for the fundamental mode (open symbols) have been plotted directly. The 
slope of a straight line, fit through these points is the streamwise wavenumber, a,. 
The phase velocity C,, is determined from this as C, = 2nf/a,. If the phase velocities 
of these two modes are the same, the ratio of their slopes should be the ratio of their 
frequencies, namely 2 :  1. To present this better, the actual phase slope for the 
subharmonic mode was doubled for the presentation in figure 10 (solid symbols). 

For the fundamental mode, the phase velocity is constant and equal to 92 % of the 
free-stream speed. This value compares well to that from the calculations of Ko et al. 
(1970), which give CJU,, = 0.94 at these relatively far downstream locations. 

Initially, the phase velocity of the subharmonic three-dimensional mode is 67 % 
(68 % for the A-conditions) of the free-stream speed. Past the fourth measurement 
location, the three-dimensional mode adjusts its phase speed to match that of the 
two-dimensional mode. The phase adjustment occurs within approximately one-half 
of a subharmonic wavelength. The phase speed change corresponds exactly to the x- 
location where we first observed the secondary growth of the three-dimensional mode 
(figure 9a).  This was similarly true for the A-conditions. Such a change in phase to 
match phase velocities, coupled with a secondary growth of an otherwise less 
amplified mode, satisfies the criteria for resonance. These observations are evidence 
that a secondary instability mechanism leading to the resonant energy exchange 
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between the two-dimensional fundamental and three-dimensional subharmonic 
modes, resulting in the enhanced growth of the three-dimensional mode, is occurring 
in this far wake. 

The downstream evolution of the eigenfunction modulus and phase for the 
fundamental two-dimensional and subharmonic three-dimensional modes are 
presented in figures 11-15. Figures 11-13 correspond to the linear regime, upstream 
of energy saturation, where linear and weakly nonlinear analysis is valid. For the 
moduli, the downstream growth in amplitude is taken out by normalizing by Uht. 
For the phase, the curves are shifted by the local phase difference from the upstream 
reference, corresponding to the values plotted in figure 10. 

The eigenfunctions for the two-dimensional fundamental mode in the linear regime 
are presented in figure 11. They show a shape which is characteristic of the 
symmetric two-dimensional mode, derived from linear temporal analysis such as by 
Sato & Kuriki (1961). In particular for the u-component, they show a double-peaked 
amplitude distribution with the minimum on the wake centreline, and 180' phase 
shift on either side of the wake centreline. For the v-component, we observe the 
characteristic single-peaked amplitude distribution with a maximum on the wake 
centreline and 0' phase shift on either side of the wake centreline. Of course, the 
phase shift in the w-component time series across the wake centreline defines the 
symmetry of initial disturbance and amplified modes. 

For the fundamental two-dimensional mode, the eigenfunction modulus and phase 
maintain these forms, even past energy saturation. This is evident by comparing 
these to the further downstream distributions in figure 14(a) for the moduli, and 
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figure 15 ( a )  for the phase (u-component). The distribution from Sato & Kuriki (1961) 
is shown as the solid points. 

The eigenfunction for the three-dimensional subharmonic mode in the linear region 
is shown in figures 12 and 13 for the two velocity components. We present more x- 
locations for this mode in order to clearly document the evolution which results from 
the resonant interaction with the fundamental two-dimensional mode. 

By our disturbance input, the three-dimensional subharmonic mode is initially 
symmetric (sinuous). This is most evident from the eigenfunction phase where the 
w-component exhibits a 0' phase shift on either side of the wake centreline, and the 
u-component shows a 180" phase shift. The distribution is clear at the first three 
x-locations in figures 13(b) and 14(b). 

In  this case (J) resonance occurred at x = 120 mm, where the phase velocity of the 
subharmonic mode changed to match that of the fundamental, and enhanced growth 
began. In that process, the eigenfunctions evolve from ones which are characteristic 
of a symmetric mode to those which are characteristic of an antisymmetric (varicose) 
mode. Again, this is most clearly seen in the eigenfunction phase. There, in the w- 
component, the phase shift across the centreline is observed to gradually move from 
0' to 180'. Similarly, the u-component phase shift moves from 180' to 360' (0'). This 
transformation from a symmetric to an antisymmetric mode shape was predicted in 
the analysis of Flemming (1987) as a consequence of the secondary instability process 
when the fundamental two-dimensional mode is symmetric. 
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I n  this case, beyond x = 162 mm to our last measurement station at x = 507 mm, 
the eigenfunction phase is self-similar. This can be seen in figure 15 (b ,  c), which shows 
the phase distributions corresponding to  every third x-position, starting a t  x = 
192 mm. The solid points correspond to  the predicted distribution from Flemming 
(1987). The comparison is reasonably good, especially in the w-component. 

For the eigenfunction modulus, beyond x = 162 mm, the distribution for the w- 
component modulus is also reasonably self-similar. This is evident in the bottom plot 
of figure 13(a) and right plot of figure 14(b) .  I n  the upper right corners of each plot 
in figure 14 ( b )  are the eigenfunction moduli from the analysis of Flemming (1985), for 
the respective velocity components. 

Focusing on the w-component, the modulus shows two peaks, with a minimum 
which is displaced off the wake centreline. One of the peaks is larger in amplitude 
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the linear regime. 

than the other. The agreement between the shape of the measured moduli and that 
from the analysis is reasonably good. We note that the actual side of the wake 
centreline where the major peak resided appeared to shift beyond 5 = 267 mm. In 
figure 14, the x = 222 mm and 267 mm positions are rotated about the centreline to 
show better the degree of self-similarity. 

For the u-component, the eigenfunction moduli also show two peaks with a 
minimum displaced from the centreline. As with the phase, the comparison to the 
analytic distribution for the u-component is not as good. 
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4.3. Phase-averaged picture 
In  reconstructing the flow field, we were especially interested in capturing the 
behaviour of the wake past the point of initial energy saturation of the input modes. 
As the previous figures demonstrate, the eigenfunctions past the location of energy 
saturation maintain the same character as those in the linear and subharmonic mode 
secondary growth regimes. However, past energy saturation the amplitudes of these 
modes exhibited a cyclic growth and decay. This is best illustrated in the downstream 
amplitude development for the J-conditions seen in the top part of figure 9:  we 
observe that energy in the fundamental mode first saturates at approximately x = 
220mm, where its amplitude is approximately four times that of the three- 
dimensional mode. Past this z-location, the fundamental mode begins to decay. At 
the same time, the amplitude in the three-dimensional subharmonic increases, so 
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(a) amplitude and ( b )  phase for the v-component of velocity for the J-conditions; s-locations are 
within the linear regime. 

that x = 350 mm, it is the dominant mode with an amplitude approximately eight 
times that of the fundamental. Beyond this x-position, the amplitude of the three- 
dimensional mode decays, and that of the fundamental increases and again becomes 
dominant at  x = 440 mm. Past this point, the cycle continues. The period of this 
cycle is approximately 200 mm, which corresponds to approximately 12 fundamental 
mode wavelengths. 

Similar behaviour to this has been documented in the instability of thin shear 
layers of axisymmetric jets for a parametric interaction of fundamental and 
subharmonic axisymmetric modes. An example is seen past the linear growth region 
in figure 7 of Corke et al. (1990). In  that case, less than one complete cycle can be 
followed. In subharmonic resonance in boundary layers, such as documented by 
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Corke & Mangano (1989), this behaviour is not generally seen. Rather, the level of the 
subharmonic three-dimensional mode rapidly grows to exceed that of the 
fundamental two-dimensional mode, and remains dominant. The slow spatial 
evolution of the wake then offered conditions where we could look at  this stage of 
development, just past energy saturation, in more detail. 

The method of seeding both two- and three-dimensional modes, and the use of a 
single computer to produce the disturbance inputs and clock the data acquisition, 
made it an easy task to reconstruct the unsteady flow field in a phase-averaged sense. 
Using the u- and v-fluctuation time series, phase-averaged vector plots, such as 
shown in figure 16 at x = 267 mm, were created. Phase averaging was done using 
ensemble lengths corresponding to three subharmonic cycles. This is evident in the 
vector plot as the three repeating structures. By comparing the features from one 
subharmonic cycle to the next within this figure, we also get a visual sense of the high 
degree of phase locking of the input modes at this x-location. 

To visualize the structure of the wake in the (y, 2)-plane, we followed the evolution 
of a sheet of tracer particles introduced at different x-locations. The sheet of particles 
is shown in its undeformed state in figure 17. The particles are deliberately spaced 
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twice as closely in the centre portion of the wake in order to better show the features 
in the regions of the largest mean shear. The particles are transported in two- 
dimensional vector space, x, to follow the local two-dimensional velocity vectors, o, 
according to the relation dx/x = dodt. The flow field includes the mean flow and 
phase-averaged fluctuations. The patterns that result are then due to the time- 
integrated paths the particles have taken from their initial position at t = 0. 

The resulting particle distributions are shown in figure 18 (a-f) at six x-positions, 
z = 222,267,357,417,462 and 507 mm. These positions are also denoted as (a-f) a t  
the top of figure 9. They correspond respectively to the location of the first 
fundamental mode maximum, the first point of crossing where the fundamental 
mode is decaying and the subharmonic mode is growing, the location where the 
subharmonic mode is a maximum, the point of the second crossing, the location of 
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FIGURE 17. Initial positions of velocity tracer particles used in figure 18. 

the second fundamental mode maximum, and the point of the third crossing. These 
appear in a frame of reference which is moving at the phase velocity of the 
fundamental and subharmonic modes, which a t  this point are matched (figure 10). 
The field of view corresponds to six fundamental (three subharmonic) mode 
wavelengths. 

At the first 2-position (222 mm), the particle patterns reveal a wave-like structure, 
which is principally due to the fundamental mode (six cycles). The structure due to 
the weaker subharmonic mode (three cycles) is also evident, especially in the line of 
particles a t  y/b = -2.  
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At the next x-position (267 mm), the two modes are at the same amplitude. This 
is evident in the particle distribution in figure 1 8 ( b ) ,  which shows structures with a 
combination of the two wavelengths. A clear asymmetry in the subharmonic mode 
structure is also visible across the wake. 
The subharmonic mode grows to a maximum at the next z-position (357 mm), 

figure lS(c).  The structure of the particle distributions is now mostly due to the 
subharmonic mode. Since this mode is three-dimensional, this view only represents 
a two-dimensional cut through it. By the next x-position (417 mm), in figure l S ( d ) ,  
the amplitude of the subharmonic and fundamental modes are again the same. 
The particle distributions in this case look similar to the previous crossing point a t  
x = 267 mm (figure 18b) .  

5 FLM 239 
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FIGURE 18. Distributions of velocity tracer particles inserted in phase-averaged velocity field at the 
strategic s-locations denoted in figure 9(a) for forced J-condition : (a )  x = 222 mm;  ( b )  267 mm; ( e )  
357 mm; (d )  417 mm; (e) 462 mm; ( f )  507 mm. 

At the next x-position (462 mm), the fundamental mode is again a maximum, 
which is also evident in the structure of the wake in figure 18(e). At this stage, the 
fundamental mode is still believed to  be two-dimensional. This is based on the 
fundamental-mode eigenfunction modulus and phase distributions (figures 11, 12, 
14a and 15a) which maintain the features at this x-position that are characteristic 
of a two-dimensional mode. 

The next crossing point a t  x = 507 mm (figure 18f) marks the return of the 
subharmonic mode. Again, the similarity of the structure of the wake to the previous 
crossing points seen in figure 18(d ,  b )  is evident. 

To see the effect of the exclusive growth and decay of these two modes on the 
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distribution of vorticity in the wake, we have presented in figure 19 contours of 
constant normalized z-component vorticity, o, b(x)/U,,. With this normalization, the 
maximum absolute level of w, was nearly constant for all the x-locations examined. 
This value, corresponding to the highest contour level, was 0.1. As before, the wake 
is viewed in a frame of reference moving a t  the phase velocity of the input modes. 
The sense of circulation is counterclockwise for solid-line contours. The contour with 
absolute level closest to w, = 0 has not been plotted for clarity. 

At the most upstream location, x = 222 mm in figure 19(a) ,  a wave-like vorticity 
distribution, with a dominant structure at the fundamental wavelength, is evident. 
A hint of the subharmonic mode is seen at the edges of the wake, as the slight 
variation of the vorticity distributions on every other structure. 

At the first amplitude crossing point (x = 267 mm), in figure 19(b) ,  we observe a 
transition to the merging of the vortical structures. The merging is complete in figure 
19(c) (x = 357 mm), where the growth to dominance of the subharmonic mode has 
redistributed the vorticity to a periodic structure at its wavelength. The smaller- 
scale vortical structures on the outer edges of the wake appear to be associated with 
the $f mode. 

At the second transition point (z = 417 mm), the regrowth of the fundamental 
mode marks a transition to the shorter-wavelength structure. This is fully achieved 
by x = 462 mm (figure 19e). The transition to the remerging of these is seen again a t  
the third crossing point at x = 507 mm (figure 19f ). 

4.4. Mean flow effects 
What effect does the enhanced secondary growth of the three-dimensional mode, and 
periodic growth and decay past initial energy saturation, have on the mean flow in 
the wake ? A measure of the effect on the mean flow is the downstream development 
of the half-width, b,  which is presented for the natural and J- and A-conditions in 
figure 4. 

As an indication of the energy transferred to or from the mean flow by the coherent 
motions, we calculated the distribution across the wake of the coherent mode 
production, -mdU/dy. This is presented in figure 20 for the same six x-locations 
(denoted a-f in figure 9 ) .  To show the separate contribution of each mode to the 
coherent mode production, the time series were first digitally bandpass filtered about 
each centre frequency. The distributions for the fundamental and subharmonic 
modes appear as the open and closed symbols, respectively. 

As has been pointed out by Liu (1989), the coherent-mode production mechanism 
gives rise to shear-layer spreading as long as energy is transferred from the mean flow 
to the disturbances. This occurs when -mdUldy > 0. At the first x-position 
(222 mm), just past the end of the linear growth region, a significant contribution 
from the mean flow goes only to the two-dimensional fundamental mode. This 
indicates that the secondary growth of the subharmonic mode is due primarily to an 
energy exchange from the fundamental mode. In addition, the growth in the wake 
half-width to this point is then predominantly due to the growth of the two- 
dimensional mode. 

Past this x-location, we had observed a decrease in the wake half-width. 
Coincident with this was a decay in the amplitude of the two-dimensional mode and 
an increase in the amplitude of the three-dimensional mode. The decrease in the half- 
width is consistent with a decrease in the positive coherent-mode production for the 
fundamental mode seen in figure 2 0 ( b ) .  This corresponds to the x-position in the 
vicinity of the amplitude crossing a t  x = 267 mm (position b) .  For the three- 

5-2 



126 T. C .  Corke, J. D .  Krull and M .  Ghassemi 

-1.9 

y - 0  
b 

1.9 

3.9 
0 2.4 4.8 7.2 9.6 12.0 14.4 

x (4 

0 2.4 4.8 7.2 9.6 12.0 14.4 

x (cm) 

_., 
0 2.4 4.8 7.2 9.6 12.0 14.4 

x ( 4  
FIGURE 19(a-c). For caption see facing page. 

dimensional mode, on the negative-y/b side of the wake centreline, a small positive 
value of the coherent-mode production indicates some transfer of energy from the 
mean flow to the subharmonic mode. This amount is relatively small so that most of 
the growth of the three-dimensional mode a t  this stage must be due to the 
fundamental mode. For the three-dimensional mode on the positive-ylb side of the 
wake centreline, the negative coherent-mode production indicates that energy is 
being transferred back to  the mean flow. It is interesting to note that in the particle 
distributions a t  this x-position in figure 18 ( b ) ,  we observe rolled-up structures on the 
negative-ylb side of the wake centreline, but not on the positive side. 

The asymmetry across the wake centreline in the sign of the coherent-mode 
production appears for both modes at  the x-location of the subharmonic-mode 
amplitude maximum, at x = 357 mm, seen in figure 20(c).  Past this x-position, the 
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FIQURE 19. Contours of constant vorticity o, in phase-averaged velocity field at  the strategic x- 
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production term is positive for both modes, but relatively small. The regrowth of the 
fundamental mode at this stage is then primarily due to an energy exchange from the 
subharmonic. 

The minimum in the total positive energy-mode production a t  2 = 417 mm (figure 
2 0 4  corresponds to the region of the minimum wake half-width. The growth of the 
wake width past this point correlates well with a net positive coherent-mode 
production seen in figure 20(e , f ) .  Although the distribution across the wake is not 
symmetric, the coherent-mode production is positive everywhere. 
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5. Discussion of results 
5.1. Subharmonic resonance 

The results given in the previous section documented the enhanced secondary growth 
of three-dimensional subharmonic modes through a resonant (parametric) interaction 
with a fundamental two-dimensional mode. In  an interaction of this type, the 
amplitude of the fundamental mode must exceed a threshold value for resonance to  
occur. Flemming (1987) predicted a fundamental two-dimensional-mode threshold 
amplitude, A = (u ; . JU0) /h ,  or approximately 15% to give a growth rate of a 
subharmonic three-dimensional mode comparable to that of the two-dimensional 
fundamental. In  our case, the maximum velocity fluctuation, U ~ . , , ~ ~ ~ / U ~ ,  a t  the 
beginning of subharmonic resonance was 1.3% and 0.3% for the J- and A- 
conditions, respectively. The deficit factor, h, a t  this x-position was approximately 
0.28, giving values for A of 4.6 YO and 1.1 YO, respectively. 

In this regard, we have some discrepancy between the predicted and measured 
threshold levels. However, in experiments absolute levels are somewhat ambiguous 
since they vary with the spectral bandwidth. I n  our case, the levels have been 
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FIGURE 20. Distribution of coherent-mode production for fundamental and subharmonic modes 
across the wake at the strategic x-locations denoted in figure 9 ( a )  for forced J-conditions: x = 
222 mm; (b) 267 mm; (c) 357 mm; (d )  417 mm; (e) 462 mm; (f) 507 mm. The fundamental and 
subharmonic modes are shown as open and closed symbols respectively. 

converted to the standard 1 Hz bandwidth. Therefore, rather than compare absolute 
levels, we can look to effects of different initial conditions. These most notably are 
differences between the J- and A-conditions, namely their wave angles and relative 
amplitude, LL.,-,/&~ (table 1). 

For a fixed wake Reynolds number, the secondary growth rate of a subharmonic 
three-dimensional mode depends both on its spanwise wavenumber (wave angle), 
and the amplitude of the fundamental (two-dimensional) mode. We had selected the 
wave angles in the two cases to approximately bracket the most amplified range. 
According to the analysis, at  a lower fundamental mode amplitude, A x 1 YO, the less 
steep waves (A-condition) should be more amplified. As A increases the amplification 
of more steep waves increases, so that at  A x 15 YO, those of the J-conditions should 
be slightly more amplified. 

We find these features in the secondary growth of the subharmonic mode in figure 
9. In particular, the lower threshold level required for the less steep wave condition 
(A) supports the fact that these are more amplified a t  lower fundamental amplitudes 
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than the steeper wave condition (J). Oncc resonance occurs, however, as the 
amplitude of the fundamental mode increases downstream, we observe a larger 
overall amplification rate in the more steep (J) wave condition. 

A major difference between our experimental conditions and the analysis is in the 
choice of the streamwise wavenumber for the two-dimensional mode. In  order to 
satisfy the slowly varying amplitude criterion for the two-dimensional mode, he 
selected ones which were neutrally growing. This is the customary approach (see for 
example Kelly 1968). In  our experiment the secdcd two-dimensional mode was near 
the most amplified. This was a consequence of the need to suppress the natural two- 
dimensional mode, while introducing new modes with controlled origins. Even with 
this difference, the comparisons t o  his analysis in terms of the trend in threshold 
amplitude, and in the eigenfunctions, especially for the v-component, are quite good. 

At the point of energy saturation and beyond, the weakly nonlinear analysis is no 
longer valid. At this stage we had observed the two- and three-dimensional modes to 
undergo an exclusive, periodic growth and decay. The level of the coherent-mode 
energy production indicated that in this process the growth of one mode over the 
other was largely due to an energy exchange between them. This suggests that a 
simple two-equation amplitude model with couping terms, such as had been 
introduced by Stuart (1962), may be suitable to describe this behaviour. 

5.2. Wake structure 
The asymmetry that existed in the subharmonic eigenfunction across the wake 
centreline was similarly manifest in the structure of vortical motions. Given this 
feature of asymmetry of the vortical structures in a wake undergoing parametric 
three-dimensional-mode growth, we can look to flow visualization records in other 
experiments for evidence of this mechanism. The experiment which best shows three- 
dimensional subharmonic mode growth is that of Cimbala (1984), specifically his 
Re, = 150 case in the flow visualization record reproduced in figure 20 of Cimbala 
et al. (1988). I n  that figure, the similarity to the patterns obtained in boundary layers 
undergoing three-dimensional subharmonic mode transition (for example compared 
to figure 14c of Corke & Mangano 1989) had partly motivated us to look for a similar 
mechanism for three-dimensional-mode growth in wakes. Unfortunately, edge-view 
photographs documenting the structure across the wake centreline were not 
available in that case. In  another of their cases a t  R e ,  = 140 (Cimbala et al., figure 
19), where edge views were available, the three-dimensional-mode structure was 
formed at  the same streamwise wavelength as that of the upstream two-dimensional 
mode, not a t  twice the wavelength as for a three-dimensional subharmonic. In  that 
instance, the peaks of the three-dimensional structures were also aligned in span. The 
aligned peak structure is a characteristic of fundamental-mode transition (K-type) in 
boundary layers (see for example the review by Herbert 1988). The edge-view 
photographs from Cimbala et al. in that case indicated a symmetric (sinuous) 
structure. 

A somewhat less well-documented case in Cimbala et al. (1988) was for R e ,  = 190. 
In  this instance both spanwise and edge views of the visualized flow field existed 
(Cimbala et al., figure 21) .  Although not as clearly seen, the initial formation of three- 
dimensional structures a t  the most downstream location appears to  be staggered in 
span. The edge view shows vortical patterns which are antisymmetric (varicose) and 
have a tendency to  roll up only on the top side of the wake. The combination of these 
features suggests that  a three-dimensional subharmonic-mode resonance mechanism 
could have been operative in that case. 
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The inviscid vortex model of Lasheras & Meiburg (1990) with a three-dimensional 
subharmonic perturbation of a plane wake had also shown an asymmetry in the 
vortical structures across the wake centreline. I n  an observation similar to  ours, this 
was seen as a preferential formation of vortices in one of the two vortical layers 
composing the wake. They acknowledge that this behaviour is distinctly different 
from that of fundamental three-dimensional-mode growth. They had not, however, 
observed indications of a periodic exclusive growth of the two- and three-dimensional 
modes, as we had in our experiment. 

Finally, it is tempting to try to  extend our observations of the initial three- 
dimensional-mode growth in laminar wakes to that in turbulent wakes. For example, 
Mumford (1983) found that the structures in a turbulent wake were often confined 
to one side of the wake centreplane rather than extending across the entire wake. 
Townsend (1966) had observed growth-decay cycles of large (three-dimensional) 
structures in turbulent wakes, which prompted his equilibrium hypothesis. The 
similarity to  features observed here may suggest some universality in the generation 
of three-dimensional modes between these two flow regimes in the far-wake region of 
two-dimensional bodies. 

6. Conclusions 
The results indicate that in the far wake of a two-dimensional body, a parametric 

resonance between a fundamental two-dimensional mode and subharmonic three- 
dimensional modes can exist. Resonance was marked by an adjustment of the phase 
speed of the three-dimensional mode to  match that of the two-dimensional mode. 
The point of phase-speed matching coincided with the secondary exponential growth 
of the three-dimensional mode. The spatial growth rate of the three-dimensional 
mode was nearly the same as that of the two-dimensional mode. Prior to  the point 
of resonance, the subharmonic modes were exponentially decaying. 

The eigenfunction amplitude and phase for u- and w-velocity components were 
found to agree well with results from past experiments and analysis. I n  particular, 
the two-dimensional fundamental-mode eigenfunction compared well with those 
from Sat0 & Kuriki (1961). The three-dimensional subharmonic-mode eigenfunction 
showed good agreement with those from the analysis of Flemming (1987) for a 
subharmonic three-dimensional mode. The eigenfunctions were distinctly different 
from that of the two-dimensional mode, in particular they showed an asymmetric 
energy and phase distribution across the wake centreline. This aspect was manifest 
in the shapes of vortical structures on either side of the centreplane of the wake, 
which was driven by the growth of the subharmonic mode. 

I n  addition to  the agreement in mode shape, the differences in threshold amplitude 
of the two-dimensional mode to  initiate resonance in subharmonic three-dimensional 
modes with different spanwise wavenumbers were in agreement with analysis. The 
absolute threshold levels were qualitatively similar. 

Beyond fundamental-mode energy saturation, the parametric resonance leads to  
a damped periodic exclusive downstream growth and decay of these modes. This 
type of behaviour may lend itself to a two-mode interaction model of the type 
proposed by Stuart (1962) to describe the coupled interaction of the two- and three- 
dimensional modes that was observed in our experiments. 
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